Tutorial 6: An Approximate Tutorial

This last tutorial is meant to give you some approximate insight into the ABM-Algorithm. Let us begin by recalling this algorithm.

Let $P = \mathbb{R}[x_1, \ldots, x_n]$, let $\mathbb{X} = \{p_1, \ldots, p_s\} \subseteq [-1, 1]^n$, let σ be a degree compatible term ordering, and let $\varepsilon > \varepsilon' > 0$.

- 1. Let $G = \emptyset$, $\mathcal{O} = \{1\}$, $\mathcal{M} = (1, ..., 1)$, and d = 0.
- 2. Increase d by one. Let $L = [t_1, \ldots, t_\ell]$ be $\mathbb{T}_d^n \setminus \langle \mathrm{LT}_\sigma(G) \rangle$, ordered decreasingly w.r.t. σ . If $L = \emptyset$, return (G, \mathcal{O}) and stop.
- 3. Append $\operatorname{eval}(t_1), \ldots, \operatorname{eval}(t_\ell)$ as new first rows to \mathcal{M} and get a matrix \mathcal{A} . Using the SVD of $\mathcal{A}^{\operatorname{tr}}$, compute a matrix \mathcal{B} whose rows are a basis of $\operatorname{apker}(\mathcal{A}^{\operatorname{tr}}, \varepsilon)$.
- 4. Reduce \mathcal{B} to row echelon form. Normalize each row after every reduction step. If at some point a column contains no pivot element of absolute value $> \varepsilon'$ in the untreated rows, replace the corresponding elements by zero. The result is a matrix $\mathcal{C} = (c_{ij})$.
- 5. For the columns j of C containing a pivot element c_{ij} , append the polynomial corresponding to row i to G.
- 6. For the columns j of C containing no pivot element, append t_j to \mathcal{O} , append the row $eval(t_j)$ as a new first row to \mathcal{M} , and continue with (2).

This is an algorithm which computes a pair (G, \mathcal{O}) . The list G is a unitary minimal σ -Gröbner basis of the ideal $I = \langle G \rangle \subset P$. The ideal I is zerodimensional and a δ -approximate vanishing ideal of \mathbb{X} . The list \mathcal{O} contains an order ideal of monomials whose residue classes form an \mathbb{R} -vector space basis of P/I.

In the following we will use ApCoCoA to work through one example for this algorithm.

- a) Let $X_1 = \{(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)\}$, use the threshold numbers $\varepsilon = 0.1$ and $\varepsilon' = 10^{-6}$, and let $\sigma = \text{DegRevLex}$.
 - Show that in degree d = 1 we have the singular values $s_1 = 2.13$, $s_2 = 0.91$ and $s_3 = 0.35$. Hence no singular value trunction is necessary. Furthermore, show that $\mathcal{B} = \mathcal{C} = (0, 0, 0)$.
- b) Show that in degree d = 2 we have the singular values $s_1 = 2.22$, $s_2 = 1.21$, $s_3 = 0.40$, and $s_4 = 0.006$. Perform the singular value truncation and compute the matrix $\tilde{\mathcal{A}}$. Compare $\tilde{\mathcal{A}}$ to the original matrix \mathcal{A} .

Hint: The CoCoA command FloatStr(...) is useful here.

c) Prove that the space apker $(\mathcal{A}^{tr}, \varepsilon)$ is generated by the rows of

$$\mathcal{B} = \begin{pmatrix} 0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\ 0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\ 0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003 \end{pmatrix}$$

- d) Write a CoCoA function Normalize(...) which takes a row vector $v = (v_1, \ldots, v_n)$ and computes an approximation of its Euclidean norm ||v|| in the following way. First multiply the numerator and the denominator of $c = v_1^2 + \cdots + v_n^2$ by a sufficiently large integer (e.g. by 10^{100}). Then take Isqrt(...) of both integers and form the quotient of the results.
- e) Using your function Normalize(...), perform a normalized Gaußian reduction on \mathcal{B} . Show that the result is the matrix

$$\mathcal{C} = \begin{pmatrix} 0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\ 0 & -0.027 & -0.707 & 0.014 & 0.707 & -0.007 \\ 0 & 0 & -0.707 & 0.014 & 0.707 & -0.007 \end{pmatrix}$$

- f) Conclude that a δ -approximate vanishing ideal of X_1 is given by $I = \langle g_1, g_2, g_3 \rangle$, where $g_1 = 0.65x^2 0.66xy + 0.08y^2 0.33x 0.08y + 0.004$, $g_2 = -0.027xy 0.707y^2 + 0.014x + 0.707y 0.007$, and $g_3 = -0.707y^2 + 0.014x + 0.707y 0.007$. (Can you find an approximation for δ ?) Interpret the result.
- g) Using ApCoCoA interactively in a similar way, apply the ABM-Algorithm to the following cases and interpret the results. Use $\varepsilon = 0.1$ and $\varepsilon' = 10^{-6}$ again, and let $\sigma = \text{DegRevLex}$.
 - 1. $X_2 = \{(0.302, 0.399), (0.001, 0.103), (-0.405, 0.297), (0.296, -0.398), (-0.002, -0.096)\}$
 - 2. $X_3 = \{(0.25, 0.102), (0.3, 0.101), (-0.095, 0.102), (-0.101, 0.098), (0.76, 0.097), (0.81, 0.095)\}$
- h) Now implement the ABM-Algorithm in a CoCoA function ABM(...). The function should take \mathbb{X} , ε and ε' and return a Gröbner basis of a δ -approximate vanishing ideal I of \mathbb{X} with respect to the current term ordering, an order ideal \mathcal{O} which is an \mathbb{R} -basis for P/I, and an approximation for δ .

Hint: You may want to write an auxiliary function NormalizedGauss(...) first. The CoCoA data type of a record can be used to collect information of very different types (such as I, \mathcal{O} , and δ) in one object.

i) Apply your function ABM(...) to the sets X_1, X_2 , and X_3 above and compare the results to your interactive computation.

... and this is approximately
$$The \ End$$