Tutorial 6: An Approximate Tutorial

This last tutorial is meant to give you some approximate insight into the ABMAlgorithm. Let us begin by recalling this algorithm.

Let $P=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, let $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\} \subseteq[-1,1]^{n}$, let σ be a degree compatible term ordering, and let $\varepsilon>\varepsilon^{\prime}>0$.

1. Let $G=\emptyset, \mathcal{O}=\{1\}, \mathcal{M}=(1, \ldots, 1)$, and $d=0$.
2. Increase d by one. Let $L=\left[t_{1}, \ldots, t_{\ell}\right]$ be $\mathbb{T}_{d}^{n} \backslash\left\langle\operatorname{LT}_{\sigma}(G)\right\rangle$, ordered decreasingly w.r.t. σ. If $L=\emptyset$, return (G, \mathcal{O}) and stop.
3. Append $\operatorname{eval}\left(t_{1}\right), \ldots, \operatorname{eval}\left(t_{\ell}\right)$ as new first rows to \mathcal{M} and get a matrix \mathcal{A}. Using the SVD of $\mathcal{A}^{\text {tr }}$, compute a matrix \mathcal{B} whose rows are a basis of $\operatorname{apker}\left(\mathcal{A}^{\operatorname{tr}}, \varepsilon\right)$.
4. Reduce \mathcal{B} to row echelon form. Normalize each row after every reduction step. If at some point a column contains no pivot element of absolute value $>\varepsilon^{\prime}$ in the untreated rows, replace the corresponding elements by zero. The result is a matrix $\mathcal{C}=\left(c_{i j}\right)$.
5. For the columns j of \mathcal{C} containing a pivot element $c_{i j}$, append the polynomial corresponding to row i to G.
6. For the columns j of \mathcal{C} containing no pivot element, append t_{j} to \mathcal{O}, append the row $\operatorname{eval}\left(t_{j}\right)$ as a new first row to \mathcal{M}, and continue with (2).

This is an algorithm which computes a pair (G, \mathcal{O}). The list G is a unitary minimal σ-Gröbner basis of the ideal $I=\langle G\rangle \subset P$. The ideal I is zerodimensional and a δ-approximate vanishing ideal of \mathbb{X}. The list \mathcal{O} contains an order ideal of monomials whose residue classes form an \mathbb{R}-vector space basis of P / I.

In the following we will use ApCoCoA to work through one example for this algorithm.
a) Let $\mathbb{X}_{1}=\{(0.01,0.01),(0.49,0),(0.51,0),(0,0.99)\}$, use the threshold numbers $\varepsilon=0.1$ and $\varepsilon^{\prime}=10^{-6}$, and let $\sigma=\operatorname{DegRevLex}$.
Show that in degree $d=1$ we have the singular values $s_{1}=2.13$, $s_{2}=0.91$ and $s_{3}=0.35$. Hence no singular value trunction is necessary. Furthermore, show that $\mathcal{B}=\mathcal{C}=(0,0,0)$.
b) Show that in degree $d=2$ we have the singular values $s_{1}=2.22, s_{2}=$ $1.21, s_{3}=0.40$, and $s_{4}=0.006$. Perform the singular value truncation and compute the matrix $\widetilde{\mathcal{A}}$. Compare $\widetilde{\mathcal{A}}$ to the original matrix \mathcal{A}.
Hint: The CoCoA command FloatStr (. . .) is useful here.
c) Prove that the space $\operatorname{apker}\left(\mathcal{A}^{\operatorname{tr}}, \varepsilon\right)$ is generated by the rows of

$$
\mathcal{B}=\left(\begin{array}{cccccc}
0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\
0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\
0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003
\end{array}\right)
$$

d) Write a CoCoA function Normalize (. . .) which takes a row vector $v=$ $\left(v_{1}, \ldots, v_{n}\right)$ and computes an approximation of its Euclidean norm $\|v\|$ in the following way. First multiply the numerator and the denominator of $c=v_{1}^{2}+\cdots+v_{n}^{2}$ by a sufficiently large integer (e.g. by 10^{100}). Then take Isqrt (...) of both integers and form the quotient of the results.
e) Using your function Normalize(...), perform a normalized Gaußian reduction on \mathcal{B}. Show that the result is the matrix

$$
\mathcal{C}=\left(\begin{array}{cccccc}
0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\
0 & -0.027 & -0.707 & 0.014 & 0.707 & -0.007 \\
0 & 0 & -0.707 & 0.014 & 0.707 & -0.007
\end{array}\right)
$$

f) Conclude that a δ-approximate vanishing ideal of \mathbb{X}_{1} is given by $I=$ $\left\langle g_{1}, g_{2}, g_{3}\right\rangle$, where $g_{1}=0.65 x^{2}-0.66 x y+0.08 y^{2}-0.33 x-0.08 y+0.004$, $g_{2}=-0.027 x y-0.707 y^{2}+0.014 x+0.707 y-0.007$, and $g_{3}=-0.707 y^{2}+$ $0.014 x+0.707 y-0.007$. (Can you find an approximation for δ ?) Interpret the result.
g) Using ApCoCoA interactively in a similar way, apply the ABM-Algorithm to the following cases and interpret the results. Use $\varepsilon=0.1$ and $\varepsilon^{\prime}=10^{-6}$ again, and let $\sigma=$ DegRevLex.

1. $\mathbb{X}_{2}=\{(0.302,0.399),(0.001,0.103),(-0.405,0.297),(0.296,-0.398)$, $(-0.002,-0.096)\}$
$2 . \mathbb{X}_{3}=\{(0.25,0.102),(0.3,0.101),(-0.095,0.102),(-0.101,0.098)$, $(0.76,0.097),(0.81,0.095)\}$
h) Now implement the ABM-Algorithm in a CoCoA function ABM (...). The function should take \mathbb{X}, ε and ε^{\prime} and return a Gröbner basis of a δ approximate vanishing ideal I of \mathbb{X} with respect to the current term ordering, an order ideal \mathcal{O} which is an \mathbb{R}-basis for P / I, and an approximation for δ.
Hint: You may want to write an auxiliary function NormalizedGauss (. . .) first. The CoCoA data type of a record can be used to collect information of very different types (such as I, \mathcal{O}, and δ) in one object.
i) Apply your function $\operatorname{ABM}(\ldots)$ to the sets $\mathbb{X}_{1}, \mathbb{X}_{2}$, and \mathbb{X}_{3} above and compare the results to your interactive computation.
... and this is approximately
The \mathcal{E} nd
