Approximate Computations in Commutative Algebra

Martin Kreuzer

Fachbereich Mathematik
Universität Dortmund
martin.kreuzer @uni-dortmund.de
An approximate lecture, given at the
Fifth Int. CoCoA School
Hagenberg, June 22, 2007

Contents

Contents

1. Approximate Data and Polynomials

Contents

1. Approximate Data and Polynomials
2. Approximate Vanishing Ideals

Contents

1. Approximate Data and Polynomials
2. Approximate Vanishing Ideals
3. The Singular Value Decomposition

Contents

1. Approximate Data and Polynomials
2. Approximate Vanishing Ideals
3. The Singular Value Decomposition
4. The BM-Algorithm

Contents

1. Approximate Data and Polynomials
2. Approximate Vanishing Ideals
3. The Singular Value Decomposition
4. The BM-Algorithm
5. The ABM-Algorithm

Contents

1. Approximate Data and Polynomials
2. Approximate Vanishing Ideals
3. The Singular Value Decomposition
4. The BM-Algorithm
5. The ABM-Algorithm
6. We Need an Example

Ralph W. Emerson:

1 - Approximate Data and Polynomials

Ralph W. Emerson: I hate quotations.
Tell me what you know.

1 - Approximate Data and Polynomials

Ralph W. Emerson: I hate quotations.
Tell me what you know.
$P=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over the real number field
$\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\}$ finite set of points in \mathbb{R}^{n}
The map eval : $P \longrightarrow \mathbb{R}^{s}$ given by $f \mapsto\left(f\left(p_{1}\right), \ldots, f\left(p_{s}\right)\right)$ is called the evaluation map associated to \mathbb{X}.

The ideal $I_{\mathbb{X}}=\operatorname{ker}($ eval $)$ is called the vanishing ideal of \mathbb{X}.

1 - Approximate Data and Polynomials

Ralph W. Emerson: I hate quotations.
Tell me what you know.
$P=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over the real number field
$\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\}$ finite set of points in \mathbb{R}^{n}
The map eval : $P \longrightarrow \mathbb{R}^{s}$ given by $f \mapsto\left(f\left(p_{1}\right), \ldots, f\left(p_{s}\right)\right)$ is called the evaluation map associated to \mathbb{X}.

The ideal $I_{\mathbb{X}}=\operatorname{ker}($ eval $)$ is called the vanishing ideal of \mathbb{X}.
The Gretchen Question:

1 - Approximate Data and Polynomials

Ralph W. Emerson: I hate quotations.
Tell me what you know.
$P=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ polynomial ring over the real number field
$\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\}$ finite set of points in \mathbb{R}^{n}
The map eval : $P \longrightarrow \mathbb{R}^{s}$ given by $f \mapsto\left(f\left(p_{1}\right), \ldots, f\left(p_{s}\right)\right)$ is called the evaluation map associated to \mathbb{X}.

The ideal $I_{\mathbb{X}}=\operatorname{ker}(\mathrm{eval})$ is called the vanishing ideal of \mathbb{X}.
The Gretchen Question: What happens if the points of \mathbb{X} are only empirical points, e.g. points whose coordinates are derived from measured data?

In the following we let $-\varepsilon<0$ be a given threshold number.

In the following we let $-\varepsilon<0$ be a given threshold number.
A polynomial $f \in P$ is said to vanish ε-approximately at a point $p \in \mathbb{R}^{n}$ if $|f(p)|<\varepsilon$.

In the following we let $-\varepsilon<0$ be a given threshold number.
A polynomial $f \in P$ is said to vanish ε-approximately at a point $p \in \mathbb{R}^{n}$ if $|f(p)|<\varepsilon$.

And here is the (hori-)crux of the matter: the polynomials which vanish ε-approximately at \mathbb{X} do not form an ideal.

Example 1.1 If $|f(p)|=0.001<\varepsilon=0.1$ then $|(1000 f)(p)|=1>\varepsilon$.

Hence the question whether f vanishes at p or not depends on the size of f, i.e. we need a metric on P.

Definition 1.2 Let $f=a_{1} t_{1}+\cdots+a_{s} t_{s} \in P$, where $a_{1}, \ldots, a_{s} \in \mathbb{R} \backslash\{0\}$ and $t_{1}, \ldots, t_{s} \in \mathbb{T}^{n}$.
Then the number $\|f\|=\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|$ is called the (Euclidean) norm (or the size) of f.

Clearly, this definition turns P into a normed vector space.

Definition 1.2 Let $f=a_{1} t_{1}+\cdots+a_{s} t_{s} \in P$, where $a_{1}, \ldots, a_{s} \in \mathbb{R} \backslash\{0\}$ and $t_{1}, \ldots, t_{s} \in \mathbb{T}^{n}$.

Then the number $\|f\|=\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|$ is called the (Euclidean) norm (or the size) of f.

Clearly, this definition turns P into a normed vector space.

BIG TROUBLE in little Hagenberg!

A very small polynomial always vanishes ε-approximately at \mathbb{X} !

Definition 1.2 Let $f=a_{1} t_{1}+\cdots+a_{s} t_{s} \in P$, where $a_{1}, \ldots, a_{s} \in \mathbb{R} \backslash\{0\}$ and $t_{1}, \ldots, t_{s} \in \mathbb{T}^{n}$.

Then the number $\|f\|=\left\|\left(a_{1}, \ldots, a_{s}\right)\right\|$ is called the (Euclidean) norm (or the size) of f.

Clearly, this definition turns P into a normed vector space.

BIG TROUBLE in little Hagenberg!

A very small polynomial always vanishes ε-approximately at \mathbb{X} ! Hence it is reasonable to consider the condition that polynomials $f \in P$ with $\|f\|=1$ vanish ε-approximately at p.

2 - Approximate Vanishing Ideals

Definition 2.1 An ideal $I \subseteq P$ is called an ε-approximate vanishing ideal of \mathbb{X} if there exists a system of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of I such that $\left\|f_{i}\right\|=1$ and f_{i} vanishes ε-approximately at \mathbb{X} for $i=1, \ldots, r$.

2 - Approximate Vanishing Ideals

Definition 2.1 An ideal $I \subseteq P$ is called an ε-approximate vanishing ideal of \mathbb{X} if there exists a system of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of I such that $\left\|f_{i}\right\|=1$ and f_{i} vanishes ε-approximately at \mathbb{X} for $i=1, \ldots, r$.

More trouble ahead!

2 - Approximate Vanishing Ideals

Definition 2.1 An ideal $I \subseteq P$ is called an ε-approximate vanishing ideal of \mathbb{X} if there exists a system of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of I such that $\left\|f_{i}\right\|=1$ and f_{i} vanishes ε-approximately at \mathbb{X} for $i=1, \ldots, r$.

More trouble ahead!

- Approximate vanishing ideals are not at all unique. They are not necessarily zero-dimensional either!

2 - Approximate Vanishing Ideals

Definition 2.1 An ideal $I \subseteq P$ is called an ε-approximate vanishing ideal of \mathbb{X} if there exists a system of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of I such that $\left\|f_{i}\right\|=1$ and f_{i} vanishes ε-approximately at \mathbb{X} for $i=1, \ldots, r$.

More trouble ahead!

- Approximate vanishing ideals are not at all unique. They are not necessarily zero-dimensional either!
- If the coordinates of the points are very small, every polynomial of norm 1 in $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ vanishes at \mathbb{X}.

2 - Approximate Vanishing Ideals

Definition 2.1 An ideal $I \subseteq P$ is called an ε-approximate vanishing ideal of \mathbb{X} if there exists a system of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of I such that $\left\|f_{i}\right\|=1$ and f_{i} vanishes ε-approximately at \mathbb{X} for $i=1, \ldots, r$.

More trouble ahead!

- Approximate vanishing ideals are not at all unique. They are not necessarily zero-dimensional either!
- If the coordinates of the points are very small, every polynomial of norm 1 in $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ vanishes at \mathbb{X}.

In the following we ignore these problems and simply compute an approximate vanishing ideal of \mathbb{X}.

2 - Approximate Vanishing Ideals

Definition 2.1 An ideal $I \subseteq P$ is called an ε-approximate vanishing ideal of \mathbb{X} if there exists a system of generators $\left\{f_{1}, \ldots, f_{r}\right\}$ of I such that $\left\|f_{i}\right\|=1$ and f_{i} vanishes ε-approximately at \mathbb{X} for $i=1, \ldots, r$.

More trouble ahead!

- Approximate vanishing ideals are not at all unique. They are not necessarily zero-dimensional either!
- If the coordinates of the points are very small, every polynomial of norm 1 in $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ vanishes at \mathbb{X}.

In the following we ignore these problems and simply compute an approximate vanishing ideal of \mathbb{X}.

It's kind of fun to do the impossible. (Walt Disney)

$$
3 \text { - The Singular Value Decomposition }
$$

3 - The Singular Value Decomposition

Theorem 3.1 Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{R})$.
There are orthogonal matrices $\mathcal{U} \in \operatorname{Mat}_{m, m}(\mathbb{R})$ and $\mathcal{V} \in \operatorname{Mat}_{n, n}(\mathbb{R})$ and a matrix $\mathcal{S} \in \operatorname{Mat}_{m, n}(\mathbb{R})$ of the form $\mathcal{S}=\left(\begin{array}{cc}\mathcal{D} & 0 \\ 0 & 0\end{array}\right)$ such that

$$
\mathcal{A}=\mathcal{U} \cdot \mathcal{S} \cdot \mathcal{V}^{\operatorname{tr}}=\mathcal{U} \cdot\left(\begin{array}{ll}
\mathcal{D} & 0 \\
0 & 0
\end{array}\right) \cdot \mathcal{V}^{\operatorname{tr}}
$$

where $\mathcal{D}=\operatorname{diag}\left(s_{1}, \ldots, s_{r}\right)$ is a diagonal matrix.

In this decomposition, it is possible to achieve:

1. $s_{1} \geq s_{2} \geq \cdots \geq s_{r}>0$. The numbers s_{1}, \ldots, s_{r} depend only on \mathcal{A} and are called the singular values of \mathcal{A}.
2. The number r is the rank of \mathcal{A}.
3. The matrices \mathcal{U} and \mathcal{V} have the following interpretation:

$$
\begin{aligned}
\text { first } r \text { columns of } \mathcal{U} & \equiv \text { ONB of the column space of } \mathcal{A} \\
\text { last } m-r \text { columns of } \mathcal{U} & \equiv \text { ONB of the kernel of } \mathcal{A}^{\operatorname{tr}} \\
\text { first } r \text { columns of } \mathcal{V} & \equiv \text { ONB of the row space of } \mathcal{A} \\
& \equiv \text { ONB of the column space of } \mathcal{A}^{\operatorname{tr}} \\
\text { last } n-r \text { columns of } \mathcal{V} & \equiv \text { ONB of the kernel of } \mathcal{A}
\end{aligned}
$$

Definition 3.2 Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{R})$, and let $\varepsilon>0$ be given. Let $k \in\{1, \ldots, r\}$ be chosen such that $s_{k}>\varepsilon \geq s_{k+1}$. Form the matrix $\widetilde{\mathcal{A}}=\mathcal{U} \widetilde{\mathcal{S}} \mathcal{V}^{\operatorname{tr}}$ by setting $s_{k+1}=\cdots=s_{r}=0$ in \mathcal{S}. Then $\widetilde{\mathcal{A}}$ is called the singular value truncation of \mathcal{A} at ε.

Definition 3.2 Let $\mathcal{A} \in \operatorname{Mat}_{m, n}(\mathbb{R})$, and let $\varepsilon>0$ be given. Let $k \in\{1, \ldots, r\}$ be chosen such that $s_{k}>\varepsilon \geq s_{k+1}$. Form the matrix $\widetilde{\mathcal{A}}=\mathcal{U} \widetilde{\mathcal{S}} \mathcal{V}^{\text {tr }}$ by setting $s_{k+1}=\cdots=s_{r}=0$ in \mathcal{S}. Then $\widetilde{\mathcal{A}}$ is called the singular value truncation of \mathcal{A} at ε.

Corollary 3.3 Let $\widetilde{\mathcal{A}}$ be the singular value truncation of \mathcal{A} at ε.

1. $\|\mathcal{A}-\widetilde{\mathcal{A}}\|=s_{k+1}=\min \{\|\mathcal{A}-\mathcal{B}\|: \operatorname{rank}(\mathcal{B}) \leq k\}$
2. The vector subspace $\operatorname{apker}(\mathcal{A}, \varepsilon)=\operatorname{ker}(\widetilde{\mathcal{A}})$ is the largest dimensional kernel of a matrix whose Euclidean distance from \mathcal{A} is at most ε. It is called the ε-approximate kernel of \mathcal{A}.
3. The last $n-k$ columns v_{k+1}, \ldots, v_{n} of \mathcal{V} are an $O N B$ of $\operatorname{apker}(\mathcal{A}, \varepsilon)$. They satisfy $\left\|\mathcal{A} v_{i}\right\|<\varepsilon$.

4 - The BM-Algorithm

Let $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\} \subseteq \mathbb{R}^{n}$ and σ a degree compatible term ordering.

1. Let $G=\emptyset, \mathcal{O}=\{1\}, \mathcal{M}=(1, \ldots, 1)$, and $d=0$.
2. Increase d by one. Let $L=\left[t_{1}, \ldots, t_{\ell}\right]$ be $\mathbb{T}_{d}^{n} \backslash\left\langle\operatorname{LT}_{\sigma}(G)\right\rangle$ ordered decreasingly w.r.t. σ. If $L=\emptyset$, return (G, \mathcal{O}) and stop.
3. Append eval $\left(t_{1}\right), \ldots, \operatorname{eval}\left(t_{\ell}\right)$ as new first rows to \mathcal{M} and get a matrix \mathcal{A}. Find a matrix \mathcal{B} whose rows are a basis of $\operatorname{ker}\left(\mathcal{A}^{\mathrm{tr}}\right)$.
4. Reduce \mathcal{B} to row echelon form and get a matrix $\mathcal{C}=\left(c_{i j}\right)$.
5. For the columns j of \mathcal{C} containing a pivot element $c_{i j}$, append the polynomial corresponding to row i to G.
6. For the columns j of \mathcal{C} containing no pivot element, append t_{j} to \mathcal{O}, append the row $\operatorname{eval}\left(t_{j}\right)$ to \mathcal{M}, and continue with (2).

5 - The ABM-Algorithm

Let $\mathbb{X}=\left\{p_{1}, \ldots, p_{s}\right\} \subseteq[-1,1]^{n}$, let σ be a degree compatible term ordering, and let $\varepsilon>\varepsilon^{\prime}>0$.

1. Let $G=\emptyset, \mathcal{O}=\{1\}, \mathcal{M}=(1, \ldots, 1)$, and $d=0$.
2. Increase d by one. Let $L=\left[t_{1}, \ldots, t_{\ell}\right]$ be $\mathbb{T}_{d}^{n} \backslash\left\langle\operatorname{LT}_{\sigma}(G)\right\rangle$ ordered decreasingly w.r.t. σ. If $L=\emptyset$, return (G, \mathcal{O}) and stop.
3. Append $\operatorname{eval}\left(t_{1}\right), \ldots, \operatorname{eval}\left(t_{\ell}\right)$ as new first rows to \mathcal{M} and get a matrix \mathcal{A}. Using the SVD of $\mathcal{A}^{\text {tr }}$, compute a matrix \mathcal{B} whose rows are a basis of $\operatorname{apker}\left(\mathcal{A}^{\operatorname{tr}}, \varepsilon\right)$.
4. Reduce \mathcal{B} to row echelon form. Normalize each row after every reduction step. If at some point a column contains no pivot element of absolute value $>\varepsilon^{\prime}$ in the untreated rows, replace the corresponding elements by zero. The result is a matrix $\mathcal{C}=\left(c_{i j}\right)$.
5. For the columns j of \mathcal{C} containing a pivot element $c_{i j}$, append the polynomial corresponding to row i to G.
6. For the columns j of \mathcal{C} containing no pivot element, append t_{j} to \mathcal{O}, append the row $\operatorname{eval}\left(t_{j}\right)$ to \mathcal{M}, and continue with (2).
7. For the columns j of \mathcal{C} containing a pivot element $c_{i j}$, append the polynomial corresponding to row i to G.
8. For the columns j of \mathcal{C} containing no pivot element, append t_{j} to \mathcal{O}, append the row $\operatorname{eval}\left(t_{j}\right)$ to \mathcal{M}, and continue with (2).

This is an algorithm which computes a pair (G, \mathcal{O}).
The list G is a unitary minimal σ-Gröbner basis of the ideal $I=\langle G\rangle \subset P$ and satisfies $\|\operatorname{eval}(g)\|<\delta$ for $\delta=\varepsilon \sqrt{\# G}+\varepsilon^{\prime} s \sqrt{s}$ and all $g \in G$.

The list \mathcal{O} contains an order ideal of monomials whose residue classes form an \mathbb{R}-vector space basis of P / I.
5. For the columns j of \mathcal{C} containing a pivot element $c_{i j}$, append the polynomial corresponding to row i to G.
6. For the columns j of \mathcal{C} containing no pivot element, append t_{j} to \mathcal{O}, append the row $\operatorname{eval}\left(t_{j}\right)$ to \mathcal{M}, and continue with (2).

This is an algorithm which computes a pair (G, \mathcal{O}).
The list G is a unitary minimal σ-Gröbner basis of the ideal $I=\langle G\rangle \subset P$ and satisfies $\|\operatorname{eval}(g)\|<\delta$ for $\delta=\varepsilon \sqrt{\# G}+\varepsilon^{\prime} s \sqrt{s}$ and all $g \in G$.

The list \mathcal{O} contains an order ideal of monomials whose residue classes form an \mathbb{R}-vector space basis of P / I.

We have $\operatorname{dim}_{\mathbb{R}}(P / I) \leq s$. Thus I is a zero-dimensional ideal and a δ-approximate vanishing ideal of \mathbb{X}.

$$
6 \text { - We Need an Example }
$$

6 - We Need an Example

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X}=\{(0.01,0.01),(0.49,0),(0.51,0),(0,0.99)\}$ and use the threshold numbers $\varepsilon=0.1$ and $\varepsilon^{\prime}=10^{-6}$.

6 - We Need an Example

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X}=\{(0.01,0.01),(0.49,0),(0.51,0),(0,0.99)\}$ and use the threshold numbers $\varepsilon=0.1$ and $\varepsilon^{\prime}=10^{-6}$.

1. Let $G=\emptyset, \mathcal{O}=\{1\}, \mathcal{M}=(1,1,1,1)$, and $d=0$.

6 - We Need an Example

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X}=\{(0.01,0.01),(0.49,0),(0.51,0),(0,0.99)\}$ and use the threshold numbers $\varepsilon=0.1$ and $\varepsilon^{\prime}=10^{-6}$.

1. Let $G=\emptyset, \mathcal{O}=\{1\}, \mathcal{M}=(1,1,1,1)$, and $d=0$.
2. Consider $d=1$ and $L=[x, y]$.

6 - We Need an Example

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X}=\{(0.01,0.01),(0.49,0),(0.51,0),(0,0.99)\}$ and use the threshold numbers $\varepsilon=0.1$ and $\varepsilon^{\prime}=10^{-6}$.

1. Let $G=\emptyset, \mathcal{O}=\{1\}, \mathcal{M}=(1,1,1,1)$, and $d=0$.
2. Consider $d=1$ and $L=[x, y]$.
3. We form $\mathcal{A}=\left(\begin{array}{cccc}0.01 & 0.49 & 0.51 & 0 \\ 0.01 & 0 & 0 & 0.99 \\ 1 & 1 & 1 & 1\end{array}\right)$. The SVD of $\mathcal{A}^{\operatorname{tr}}$ yields $s_{1}=2.13, s_{2}=0.91$ and $s_{3}=0.35$, so no singular value truncation is necessary. We compute $B=(0,0,0)$.
4. We get $\mathcal{C}=(0,0,0)$.
5. We get $\mathcal{C}=(0,0,0)$.
6. Append x, y to \mathcal{O} and get $\mathcal{O}=\{1, x, y\}$. Moreover, let $\mathcal{M}=\mathcal{A}$.
7. We get $\mathcal{C}=(0,0,0)$.
8. Append x, y to \mathcal{O} and get $\mathcal{O}=\{1, x, y\}$. Moreover, let $\mathcal{M}=\mathcal{A}$.
9. Consider $d=2$ and $L=\left[x^{2}, x y, y^{2}\right]$.
10. We get $\mathcal{C}=(0,0,0)$.
11. Append x, y to \mathcal{O} and get $\mathcal{O}=\{1, x, y\}$. Moreover, let $\mathcal{M}=\mathcal{A}$.
12. Consider $d=2$ and $L=\left[x^{2}, x y, y^{2}\right]$.
13. We form the matrix $\mathcal{A}=\left(\begin{array}{cccc}0.0001 & 0 & 0 & 0 \\ 0.0001 & 0 & 0 & 0.9801 \\ 0.01 & 0.49 & 0.51 & 0 \\ 0.01 & 0 & 0 & 0.99 \\ 1 & 1 & 1 & 1\end{array}\right)$ and compute SVD of $\mathcal{A}^{\text {tr }}$. We get the singular values $s_{1}=2.22$, $s_{2}=1.21, s_{3}=0.40$, and $s_{4}=0.006$. Thus we have to truncate the singular value $s_{4}<\varepsilon$. The SVD of $\widetilde{\mathcal{A}}^{\text {tr }}$ yields
that the space $\operatorname{apker}\left(\mathcal{A}^{\text {tr }}, \varepsilon\right)$ is generated by the rows of

$$
\mathcal{B}=\left(\begin{array}{cccccc}
0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\
0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\
0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003
\end{array}\right)
$$

that the space $\operatorname{apker}\left(\mathcal{A}^{\text {tr }}, \varepsilon\right)$ is generated by the rows of

$$
\mathcal{B}=\left(\begin{array}{cccccc}
0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\
0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\
0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003
\end{array}\right)
$$

4. Now we perform a normalized Gaußian reduction on \mathcal{B} and get the matrix
$\mathcal{C}=\left(\begin{array}{cccccc}0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\ 0 & -0.027 & -0.707 & 0.014 & 0.707 & -0.007 \\ 0 & 0 & -0.707 & 0.014 & 0.707 & -0.007\end{array}\right)$.
that the space $\operatorname{apker}\left(\mathcal{A}^{\text {tr }}, \varepsilon\right)$ is generated by the rows of

$$
\mathcal{B}=\left(\begin{array}{cccccc}
0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\
0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\
0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003
\end{array}\right)
$$

4. Now we perform a normalized Gaußian reduction on \mathcal{B} and get the matrix

$$
\mathcal{C}=\left(\begin{array}{cccccc}
0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\
0 & -0.027 & -0.707 & 0.014 & 0.707 & -0.007 \\
0 & 0 & -0.707 & 0.014 & 0.707 & -0.007
\end{array}\right)
$$

5. Append the polynomials

$$
\begin{aligned}
g_{1} & =0.65 x^{2}-0.66 x y+0.08 y^{2}-0.33 x-0.08 y+0.004, \\
g_{2} & =-0.027 x y-0.707 y^{2}+0.014 x+0.707 y-0.007, \text { and } \\
g_{3} & =-0.707 y^{2}+0.014 x+0.707 y-0.007 \text { to } G .
\end{aligned}
$$

2. For $d=3$, we find $L=[]$. Hence the result is $G=\left\{g_{1}, g_{2}, g_{3}\right\}$ and $\mathcal{O}=\{1, x, y\}$.
3. For $d=3$, we find $L=[]$. Hence the result is $G=\left\{g_{1}, g_{2}, g_{3}\right\}$ and $\mathcal{O}=\{1, x, y\}$.

Therefore an approximate vanishing ideal of $\mathbb{X}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is given by $\left\langle g_{1}, g_{2}, g_{3}\right\rangle$ where $g_{1} \approx x\left(x-y-\frac{1}{2}\right), g_{2} \approx-0.03 x y+g_{3}$, and $g_{3} \approx(-1 / \sqrt{2})\left(y^{2}-y\right)$.
2. For $d=3$, we find $L=[]$. Hence the result is $G=\left\{g_{1}, g_{2}, g_{3}\right\}$ and $\mathcal{O}=\{1, x, y\}$.

Therefore an approximate vanishing ideal of $\mathbb{X}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$ is given by $\left\langle g_{1}, g_{2}, g_{3}\right\rangle$ where $g_{1} \approx x\left(x-y-\frac{1}{2}\right), g_{2} \approx-0.03 x y+g_{3}$, and $g_{3} \approx(-1 / \sqrt{2})\left(y^{2}-y\right)$.

The ideal $\left\langle g_{1}, g_{3}, g_{3}\right\rangle$ is the exact vanishing ideal of three points! The two points $(0.49,0)$ and $(0.51,0)$ have been combined and count as one approximate point.

Corollary 6.1 (The BB Version of ABM)

In the setting of the ABM-Algorithm, replace step $\mathbf{2}$ by the following step 2'.

2'. Increase d by one, and let L be the list of all terms of degree d, ordered decreasingly w.r.t. σ. Remove from L all terms which are contained in $\left\langle\operatorname{LT}_{\sigma}(g) \mid g \in G\right\rangle$, but not the ones in the border of \mathcal{O}. If $L=\emptyset$, return the pair (G, \mathcal{O}) and stop. Otherwise, let $L=\left[t_{1}, \ldots, t_{\ell}\right]$.

The resulting algorithm computes a pair (G, \mathcal{O}). The set $\left\{\mathrm{LC}_{\sigma}(g)^{-1} g \mid g \in G\right\}$ is the \mathcal{O}-border basis of a δ-approximate vanishing ideal $I=\langle G\rangle \subset P$ of \mathbb{X} where $\delta<\varepsilon \sqrt{\# G}+\varepsilon^{\prime} s \sqrt{s}$. The list \mathcal{O} consists of all terms which are not contained in $\operatorname{LT}_{\sigma}(I)$.

The Last Remark

In the ABM -Algorithm we assumed $\mathbb{X} \subset[-1,1]^{n}$. If the initial data points are not in this set, we have to perform data scaling.

The Last Remark

In the ABM -Algorithm we assumed $\mathbb{X} \subset[-1,1]^{n}$. If the initial data points are not in this set, we have to perform data scaling.

Mathematically, the ABM-Algorithm and the stated error estimates are also correct for arbitrary $\mathbb{X} \subseteq \mathbb{R}^{n}$. But the data scaling provides additional numerical stability for the solution.

The Last Remark

In the ABM-Algorithm we assumed $\mathbb{X} \subset[-1,1]^{n}$. If the initial data points are not in this set, we have to perform data scaling.

Mathematically, the ABM-Algorithm and the stated error estimates are also correct for arbitrary $\mathbb{X} \subseteq \mathbb{R}^{n}$. But the data scaling provides additional numerical stability for the solution.

We considered a real-world example consisting of 2541 points. For both computations, we used $\varepsilon=0.0001$. The scaled computation took 2 sec., the unscaled one took 4 sec . The following pictures show the mean size of the evaluation vectors of the computed GB polynomials.

Figure 1: Without Data Scaling

Figure 2: With Data Scaling

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: $2.8 \cdot 10^{8}$

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: $2.8 \cdot 10^{8}$
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: $2.8 \cdot 10^{8}$
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025
The Upshot:

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: $2.8 \cdot 10^{8}$
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025
The Upshot: Treat your approximate data right!
Then they will treat you approximately right!

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: $2.8 \cdot 10^{8}$
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025
The Upshot: Treat your approximate data right!
Then they will treat you approximately right!

Thank you for your attention!

