Approximate Computations in Commutative Algebra

Martin Kreuzer

Fachbereich Mathematik

Universität Dortmund

martin.kreuzer@uni-dortmund.de

An approximate lecture, given at the Fifth Int. CoCoA School Hagenberg, June 22, 2007

Contents **1.** Approximate Data and Polynomials 2. Approximate Vanishing Ideals

- **1.** Approximate Data and Polynomials
- 2. Approximate Vanishing Ideals
- 3. The Singular Value Decomposition

- **1.** Approximate Data and Polynomials
- 2. Approximate Vanishing Ideals
- 3. The Singular Value Decomposition
- 4. The BM-Algorithm

- **1.** Approximate Data and Polynomials
- 2. Approximate Vanishing Ideals
- 3. The Singular Value Decomposition
- 4. The BM-Algorithm
- 5. The ABM-Algorithm

- **1.** Approximate Data and Polynomials
- 2. Approximate Vanishing Ideals
- 3. The Singular Value Decomposition
- 4. The BM-Algorithm
- 5. The ABM-Algorithm
- 6. We Need an Example

1 – Approximate Data and Polynomials Ralph W. Emerson: I hate quotations. Tell me what you know.

Ralph W. Emerson: I hate quotations. Tell me what you know.

 $P = \mathbb{R}[x_1, \dots, x_n]$ polynomial ring over the real number field $\mathbb{X} = \{p_1, \dots, p_s\}$ finite set of points in \mathbb{R}^n

The map eval : $P \longrightarrow \mathbb{R}^s$ given by $f \mapsto (f(p_1), \ldots, f(p_s))$ is called the **evaluation map** associated to X.

The ideal $I_{\mathbb{X}} = \ker(\text{eval})$ is called the **vanishing ideal** of X.

Ralph W. Emerson: I hate quotations. Tell me what you know.

 $P = \mathbb{R}[x_1, \dots, x_n]$ polynomial ring over the real number field $\mathbb{X} = \{p_1, \dots, p_s\}$ finite set of points in \mathbb{R}^n

The map eval : $P \longrightarrow \mathbb{R}^s$ given by $f \mapsto (f(p_1), \ldots, f(p_s))$ is called the **evaluation map** associated to X.

The ideal $I_{\mathbb{X}} = \ker(\text{eval})$ is called the **vanishing ideal** of X.

The Gretchen Question:

Ralph W. Emerson: I hate quotations. Tell me what you know.

 $P = \mathbb{R}[x_1, \dots, x_n]$ polynomial ring over the real number field $\mathbb{X} = \{p_1, \dots, p_s\}$ finite set of points in \mathbb{R}^n

The map eval : $P \longrightarrow \mathbb{R}^s$ given by $f \mapsto (f(p_1), \ldots, f(p_s))$ is called the **evaluation map** associated to X.

The ideal $I_{\mathbb{X}} = \ker(\text{eval})$ is called the **vanishing ideal** of X.

The Gretchen Question: What happens if the points of X are only empirical points, e.g. points whose coordinates are derived from measured data?

In the following we let $-\varepsilon < 0$ be a given **threshold number**.

A polynomial $f \in P$ is said to **vanish** ε -approximately at a point $p \in \mathbb{R}^n$ if $|f(p)| < \varepsilon$.

In the following we let $-\varepsilon < 0$ be a given **threshold number**.

A polynomial $f \in P$ is said to **vanish** ε -approximately at a point $p \in \mathbb{R}^n$ if $|f(p)| < \varepsilon$.

And here is the (hori-)**crux** of the matter: the polynomials which vanish ε -approximately at X do not form an ideal.

Example 1.1 If $|f(p)| = 0.001 < \varepsilon = 0.1$ then $|(1000 f)(p)| = 1 > \varepsilon$.

Hence the question whether f vanishes at p or not depends on the size of f, i.e. we need a **metric** on P.

Definition 1.2 Let $f = a_1 t_1 + \dots + a_s t_s \in P$, where $a_1, \dots, a_s \in \mathbb{R} \setminus \{0\}$ and $t_1, \dots, t_s \in \mathbb{T}^n$. Then the number $||f|| = ||(a_1, \dots, a_s)||$ is called the (Euclidean)

norm (or the size) of f.

Clearly, this definition turns P into a normed vector space.

Definition 1.2 Let $f = a_1 t_1 + \dots + a_s t_s \in P$, where $a_1, \dots, a_s \in \mathbb{R} \setminus \{0\}$ and $t_1, \dots, t_s \in \mathbb{T}^n$. Then the number $||f|| = ||(a_1, \dots, a_s)||$ is called the (Euclidean)

norm (or the **size**) of f.

Clearly, this definition turns P into a normed vector space.

BIG TROUBLE in little Hagenberg!

A very small polynomial **always** vanishes ε -approximately at X!

Definition 1.2 Let $f = a_1 t_1 + \dots + a_s t_s \in P$, where $a_1, \dots, a_s \in \mathbb{R} \setminus \{0\}$ and $t_1, \dots, t_s \in \mathbb{T}^n$. Then the number $||f|| = ||(a_1, \dots, a_s)||$ is called the (Euclidean)

norm (or the size) of f.

Clearly, this definition turns P into a normed vector space.

BIG TROUBLE in little Hagenberg!

A very small polynomial **always** vanishes ε -approximately at X! Hence it is reasonable to consider the condition that polynomials $f \in P$ with ||f|| = 1 vanish ε -approximately at p.

Definition 2.1 An ideal $I \subseteq P$ is called an ε -approximate vanishing ideal of X if there exists a system of generators $\{f_1, \ldots, f_r\}$ of I such that $||f_i|| = 1$ and f_i vanishes ε -approximately at X for $i = 1, \ldots, r$.

Definition 2.1 An ideal $I \subseteq P$ is called an ε -approximate vanishing ideal of X if there exists a system of generators $\{f_1, \ldots, f_r\}$ of I such that $||f_i|| = 1$ and f_i vanishes ε -approximately at X for $i = 1, \ldots, r$.

More trouble ahead!

Definition 2.1 An ideal $I \subseteq P$ is called an ε -approximate vanishing ideal of X if there exists a system of generators $\{f_1, \ldots, f_r\}$ of I such that $||f_i|| = 1$ and f_i vanishes ε -approximately at X for $i = 1, \ldots, r$.

More trouble ahead!

• Approximate vanishing ideals are **not at all unique**. They are not necessarily zero-dimensional either!

Definition 2.1 An ideal $I \subseteq P$ is called an ε -approximate vanishing ideal of X if there exists a system of generators $\{f_1, \ldots, f_r\}$ of I such that $||f_i|| = 1$ and f_i vanishes ε -approximately at X for $i = 1, \ldots, r$.

More trouble ahead!

• Approximate vanishing ideals are **not at all unique**. They are not necessarily zero-dimensional either!

• If the coordinates of the points are very small, **every** polynomial of norm 1 in $\langle x_1, \ldots, x_n \rangle$ vanishes at X.

Definition 2.1 An ideal $I \subseteq P$ is called an ε -approximate vanishing ideal of X if there exists a system of generators $\{f_1, \ldots, f_r\}$ of I such that $||f_i|| = 1$ and f_i vanishes ε -approximately at X for $i = 1, \ldots, r$.

More trouble ahead!

• Approximate vanishing ideals are **not at all unique**. They are not necessarily zero-dimensional either!

• If the coordinates of the points are very small, **every** polynomial of norm 1 in $\langle x_1, \ldots, x_n \rangle$ vanishes at X.

In the following we ignore these problems and simply compute an approximate vanishing ideal of X.

Definition 2.1 An ideal $I \subseteq P$ is called an ε -approximate vanishing ideal of X if there exists a system of generators $\{f_1, \ldots, f_r\}$ of I such that $||f_i|| = 1$ and f_i vanishes ε -approximately at X for $i = 1, \ldots, r$.

More trouble ahead!

• Approximate vanishing ideals are **not at all unique**. They are not necessarily zero-dimensional either!

• If the coordinates of the points are very small, **every** polynomial of norm 1 in $\langle x_1, \ldots, x_n \rangle$ vanishes at X.

In the following we ignore these problems and simply compute an approximate vanishing ideal of X. It's kind of fun to do the impossible. (Walt Disney)

3 – The Singular Value Decomposition

Theorem 3.1 Let $\mathcal{A} \in \operatorname{Mat}_{m,n}(\mathbb{R})$.

There are orthogonal matrices $\mathcal{U} \in \operatorname{Mat}_{m,m}(\mathbb{R})$ and $\mathcal{V} \in \operatorname{Mat}_{n,n}(\mathbb{R})$ and a matrix $\mathcal{S} \in \operatorname{Mat}_{m,n}(\mathbb{R})$ of the form $\mathcal{S} = \begin{pmatrix} \mathcal{D} & 0 \\ 0 & 0 \end{pmatrix}$ such that

$$\mathcal{A} = \mathcal{U} \cdot \mathcal{S} \cdot \mathcal{V}^{ ext{tr}} = \mathcal{U} \cdot egin{pmatrix} \mathcal{D} & 0 \ 0 & 0 \end{pmatrix} \cdot \mathcal{V}^{ ext{tr}}$$

where $\mathcal{D} = \operatorname{diag}(s_1, \ldots, s_r)$ is a diagonal matrix.

In this decomposition, it is possible to achieve:

- 1. $s_1 \ge s_2 \ge \cdots \ge s_r > 0$. The numbers s_1, \ldots, s_r depend only on \mathcal{A} and are called the **singular values** of \mathcal{A} .
- 2. The number r is the rank of \mathcal{A} .
- 3. The matrices \mathcal{U} and \mathcal{V} have the following interpretation:
 - first r columns of $\mathcal{U} \equiv ONB$ of the column space of \mathcal{A}

last m - r columns of $\mathcal{U} \equiv$

- first r columns of $\mathcal{V} \equiv ONB$ of the row space of \mathcal{A}
 - \equiv ONB of the column space of \mathcal{A}^{tr}

last n - r columns of $\mathcal{V} \equiv$

ONB of the kernel of \mathcal{A}

ONB of the kernel of $\mathcal{A}^{\mathrm{tr}}$

Definition 3.2 Let $\mathcal{A} \in \operatorname{Mat}_{m,n}(\mathbb{R})$, and let $\varepsilon > 0$ be given. Let $k \in \{1, \ldots, r\}$ be chosen such that $s_k > \varepsilon \ge s_{k+1}$. Form the matrix $\widetilde{\mathcal{A}} = \mathcal{U} \, \widetilde{\mathcal{S}} \, \mathcal{V}^{\operatorname{tr}}$ by setting $s_{k+1} = \cdots = s_r = 0$ in \mathcal{S} . Then $\widetilde{\mathcal{A}}$ is called the **singular value truncation** of \mathcal{A} at ε .

Definition 3.2 Let $\mathcal{A} \in \operatorname{Mat}_{m,n}(\mathbb{R})$, and let $\varepsilon > 0$ be given. Let $k \in \{1, \ldots, r\}$ be chosen such that $s_k > \varepsilon \ge s_{k+1}$. Form the matrix $\widetilde{\mathcal{A}} = \mathcal{U} \, \widetilde{\mathcal{S}} \, \mathcal{V}^{\operatorname{tr}}$ by setting $s_{k+1} = \cdots = s_r = 0$ in \mathcal{S} . Then $\widetilde{\mathcal{A}}$ is called the **singular value truncation** of \mathcal{A} at ε .

Corollary 3.3 Let $\widetilde{\mathcal{A}}$ be the singular value truncation of \mathcal{A} at ε .

1. $\|\mathcal{A} - \widetilde{\mathcal{A}}\| = s_{k+1} = \min\{\|\mathcal{A} - \mathcal{B}\| : \operatorname{rank}(\mathcal{B}) \le k\}$

- The vector subspace apker(A, ε) = ker(Ã) is the largest dimensional kernel of a matrix whose Euclidean distance from A is at most ε. It is called the ε-approximate kernel of A.
- 3. The last n k columns v_{k+1}, \ldots, v_n of \mathcal{V} are an ONB of apker $(\mathcal{A}, \varepsilon)$. They satisfy $||\mathcal{A}v_i|| < \varepsilon$.

4 – The BM-Algorithm

Let $\mathbb{X} = \{p_1, \ldots, p_s\} \subseteq \mathbb{R}^n$ and σ a degree compatible term ordering.

- 1. Let $G = \emptyset$, $\mathcal{O} = \{1\}$, $\mathcal{M} = (1, ..., 1)$, and d = 0.
- 2. Increase d by one. Let $L = [t_1, \ldots, t_\ell]$ be $\mathbb{T}_d^n \setminus \langle \mathrm{LT}_\sigma(G) \rangle$ ordered decreasingly w.r.t. σ . If $L = \emptyset$, return (G, \mathcal{O}) and stop.
- 3. Append $eval(t_1), \ldots, eval(t_\ell)$ as new first rows to \mathcal{M} and get a matrix \mathcal{A} . Find a matrix \mathcal{B} whose rows are a basis of ker(\mathcal{A}^{tr}).
- 4. Reduce \mathcal{B} to row echelon form and get a matrix $\mathcal{C} = (c_{ij})$.
- 5. For the columns j of C containing a pivot element c_{ij} , append the polynomial corresponding to row i to G.
- 6. For the columns j of C containing no pivot element, append t_j to \mathcal{O} , append the row $eval(t_j)$ to \mathcal{M} , and continue with (2).

5 – The ABM-Algorithm

Let $\mathbb{X} = \{p_1, \ldots, p_s\} \subseteq [-1, 1]^n$, let σ be a degree compatible term ordering, and let $\varepsilon > \varepsilon' > 0$.

1. Let $G = \emptyset$, $\mathcal{O} = \{1\}$, $\mathcal{M} = (1, ..., 1)$, and d = 0.

- 2. Increase d by one. Let $L = [t_1, \ldots, t_\ell]$ be $\mathbb{T}_d^n \setminus \langle \mathrm{LT}_\sigma(G) \rangle$ ordered decreasingly w.r.t. σ . If $L = \emptyset$, return (G, \mathcal{O}) and stop.
- 3. Append $\operatorname{eval}(t_1), \ldots, \operatorname{eval}(t_\ell)$ as new first rows to \mathcal{M} and get a matrix \mathcal{A} . Using the SVD of $\mathcal{A}^{\operatorname{tr}}$, compute a matrix \mathcal{B} whose rows are a basis of $\operatorname{apker}(\mathcal{A}^{\operatorname{tr}}, \varepsilon)$.
- 4. Reduce \mathcal{B} to row echelon form. Normalize each row after every reduction step. If at some point a column contains no pivot element of absolute value > ε' in the untreated rows, replace the corresponding elements by zero. The result is a matrix $\mathcal{C} = (c_{ij})$.

- 5. For the columns j of C containing a pivot element c_{ij} , append the polynomial corresponding to row i to G.
- 6. For the columns j of C containing no pivot element, append t_j to \mathcal{O} , append the row $eval(t_j)$ to \mathcal{M} , and continue with (2).

- 5. For the columns j of C containing a pivot element c_{ij} , append the polynomial corresponding to row i to G.
- 6. For the columns j of C containing no pivot element, append t_j to \mathcal{O} , append the row $eval(t_j)$ to \mathcal{M} , and continue with (2).

This is an algorithm which computes a pair (G, \mathcal{O}) .

The list G is a unitary minimal σ -Gröbner basis of the ideal $I = \langle G \rangle \subset P$ and satisfies $\| \operatorname{eval}(g) \| < \delta$ for $\delta = \varepsilon \sqrt{\#G} + \varepsilon' s \sqrt{s}$ and all $g \in G$.

The list \mathcal{O} contains an order ideal of monomials whose residue classes form an \mathbb{R} -vector space basis of P/I.

- 5. For the columns j of C containing a pivot element c_{ij} , append the polynomial corresponding to row i to G.
- 6. For the columns j of C containing no pivot element, append t_j to \mathcal{O} , append the row $eval(t_j)$ to \mathcal{M} , and continue with (2).

This is an algorithm which computes a pair (G, \mathcal{O}) .

The list G is a unitary minimal σ -Gröbner basis of the ideal $I = \langle G \rangle \subset P$ and satisfies $\| \operatorname{eval}(g) \| < \delta$ for $\delta = \varepsilon \sqrt{\#G} + \varepsilon' s \sqrt{s}$ and all $g \in G$.

The list \mathcal{O} contains an order ideal of monomials whose residue classes form an \mathbb{R} -vector space basis of P/I.

We have $\dim_{\mathbb{R}}(P/I) \leq s$. Thus *I* is a zero-dimensional ideal and a δ -approximate vanishing ideal of X.

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X} = \{(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)\}$ and use the threshold numbers $\varepsilon = 0.1$ and $\varepsilon' = 10^{-6}$.

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X} = \{(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)\}$ and use the threshold numbers $\varepsilon = 0.1$ and $\varepsilon' = 10^{-6}$.

1. Let $G = \emptyset$, $\mathcal{O} = \{1\}$, $\mathcal{M} = (1, 1, 1, 1)$, and d = 0.

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X} = \{(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)\}$ and use the threshold numbers $\varepsilon = 0.1$ and $\varepsilon' = 10^{-6}$.

1. Let $G = \emptyset$, $\mathcal{O} = \{1\}$, $\mathcal{M} = (1, 1, 1, 1)$, and d = 0.

2. Consider
$$d = 1$$
 and $L = [x, y]$.

Let us follow the steps of ABM in a concrete case. We consider the set $\mathbb{X} = \{(0.01, 0.01), (0.49, 0), (0.51, 0), (0, 0.99)\}$ and use the threshold numbers $\varepsilon = 0.1$ and $\varepsilon' = 10^{-6}$.

1. Let $G = \emptyset$, $\mathcal{O} = \{1\}$, $\mathcal{M} = (1, 1, 1, 1)$, and d = 0.

2. Consider
$$d = 1$$
 and $L = [x, y]$.

3. We form
$$\mathcal{A} = \begin{pmatrix} 0.01 & 0.49 & 0.51 & 0 \\ 0.01 & 0 & 0 & 0.99 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$
. The SVD of \mathcal{A}^{tr} yields $s_1 = 2.13, s_2 = 0.91$ and $s_3 = 0.35$, so no singular value truncation is necessary. We compute $B = (0, 0, 0)$.

- 4. We get C = (0, 0, 0).
- 6. Append x, y to \mathcal{O} and get $\mathcal{O} = \{1, x, y\}$. Moreover, let $\mathcal{M} = \mathcal{A}$.

- 4. We get C = (0, 0, 0).
- 6. Append x, y to \mathcal{O} and get $\mathcal{O} = \{1, x, y\}$. Moreover, let $\mathcal{M} = \mathcal{A}$.

2. Consider
$$d = 2$$
 and $L = [x^2, xy, y^2]$.

4. We get C = (0, 0, 0).

6. Append x, y to \mathcal{O} and get $\mathcal{O} = \{1, x, y\}$. Moreover, let $\mathcal{M} = \mathcal{A}$.

2. Consider d = 2 and $L = [x^2, xy, y^2]$.

3. We form the matrix $\mathcal{A} =$	0.0001	0.2401	0.2601	0			
	0.0001	0	0	0			
	0.0001	$\begin{array}{c} 0\\ 0.49\end{array}$	0	0.9801			
	0.01	0.49	0.51	0			
	0.01	0 1	0	0.99			
	1	1	1	1 /			
and compute SVD of \mathcal{A}^{tr} . We get the singular values $s_1 = 2.22$,							
$s_2 = 1.21, s_3 = 0.40$, and $s_4 = 0.006$. Thus we have to truncate							
the singular value $s_4 < \varepsilon$. The SVD of $\widetilde{\mathcal{A}}^{\mathrm{tr}}$ yields							

that the space apker($\mathcal{A}^{tr}, \varepsilon$) is generated by the rows of $\mathcal{B} = \begin{pmatrix} 0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\ 0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\ 0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003 \end{pmatrix}$ that the space apker($\mathcal{A}^{tr}, \varepsilon$) is generated by the rows of $\mathcal{B} = \begin{pmatrix} 0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\ 0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\ 0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003 \end{pmatrix}$

4. Now we perform a **normalized** Gaußian reduction on \mathcal{B} and get the matrix

	(0.65)	-0.66	0.08	-0.33	-0.08	0.004	
$\mathcal{C} =$	0	-0.027	-0.707	0.014	0.707	-0.007	.
	0	0	-0.707	0.014	0.707	-0.007)

that the space apker($\mathcal{A}^{tr}, \varepsilon$) is generated by the rows of $\mathcal{B} = \begin{pmatrix} 0.65 & -0.66 & 0.08 & -0.33 & -0.08 & 0.004 \\ 0.07 & -0.10 & -0.70 & -0.02 & 0.70 & -0.007 \\ 0.60 & 0.74 & -0.02 & -0.30 & 0.02 & 0.003 \end{pmatrix}$

4. Now we perform a **normalized** Gaußian reduction on \mathcal{B} and get the matrix

	0.65	-0.66	0.08	-0.33	-0.08	0.004	
$\mathcal{C} =$	0	-0.027	-0.707	0.014	0.707	-0.007	.
	0	0	-0.707	0.014	0.707	-0.007	/

5. Append the polynomials $g_1 = 0.65x^2 - 0.66xy + 0.08y^2 - 0.33x - 0.08y + 0.004,$ $g_2 = -0.027xy - 0.707y^2 + 0.014x + 0.707y - 0.007,$ and $g_3 = -0.707y^2 + 0.014x + 0.707y - 0.007$ to G. 2. For d = 3, we find L = []. Hence the result is $G = \{g_1, g_2, g_3\}$ and $\mathcal{O} = \{1, x, y\}.$ 2. For d = 3, we find L = []. Hence the result is $G = \{g_1, g_2, g_3\}$ and $\mathcal{O} = \{1, x, y\}.$

Therefore an approximate vanishing ideal of $\mathbb{X} = \{p_1, p_2, p_3, p_4\}$ is given by $\langle g_1, g_2, g_3 \rangle$ where $g_1 \approx x(x - y - \frac{1}{2}), g_2 \approx -0.03xy + g_3$, and $g_3 \approx (-1/\sqrt{2})(y^2 - y).$ 2. For d = 3, we find L = []. Hence the result is $G = \{g_1, g_2, g_3\}$ and $\mathcal{O} = \{1, x, y\}.$

Therefore an approximate vanishing ideal of $\mathbb{X} = \{p_1, p_2, p_3, p_4\}$ is given by $\langle g_1, g_2, g_3 \rangle$ where $g_1 \approx x(x - y - \frac{1}{2}), g_2 \approx -0.03xy + g_3$, and $g_3 \approx (-1/\sqrt{2})(y^2 - y).$

The ideal $\langle g_1, g_3, g_3 \rangle$ is the **exact** vanishing ideal of **three** points! The two points (0.49, 0) and (0.51, 0) have been combined and count as **one approximate point**.

Corollary 6.1 (The BB Version of ABM) In the setting of the ABM-Algorithm, replace step 2 by the following step 2'.

2'. Increase d by one, and let L be the list of all terms of degree d, ordered decreasingly w.r.t. σ. Remove from L all terms which are contained in (LT_σ(g) | g ∈ G), but not the ones in the border of O. If L = Ø, return the pair (G, O) and stop. Otherwise, let L = [t₁,...,t_ℓ].

The resulting algorithm computes a pair (G, \mathcal{O}) . The set $\{\mathrm{LC}_{\sigma}(g)^{-1}g \mid g \in G\}$ is the \mathcal{O} -border basis of a δ -approximate vanishing ideal $I = \langle G \rangle \subset P$ of \mathbb{X} where $\delta < \varepsilon \sqrt{\#G} + \varepsilon' s \sqrt{s}$. The list \mathcal{O} consists of all terms which are not contained in $\mathrm{LT}_{\sigma}(I)$.

The Last Remark

In the ABM-Algorithm we assumed $\mathbb{X} \subset [-1, 1]^n$. If the initial data points are not in this set, we have to perform **data scaling**.

The Last Remark

In the ABM-Algorithm we assumed $\mathbb{X} \subset [-1, 1]^n$. If the initial data points are not in this set, we have to perform **data scaling**.

Mathematically, the ABM-Algorithm and the stated error estimates are also correct for arbitrary $\mathbb{X} \subseteq \mathbb{R}^n$. But the data scaling provides additional **numerical stability** for the solution.

The Last Remark

In the ABM-Algorithm we assumed $\mathbb{X} \subset [-1, 1]^n$. If the initial data points are not in this set, we have to perform **data scaling**.

Mathematically, the ABM-Algorithm and the stated error estimates are also correct for arbitrary $\mathbb{X} \subseteq \mathbb{R}^n$. But the data scaling provides additional **numerical stability** for the solution.

We considered a real-world example consisting of 2541 points. For both computations, we used $\varepsilon = 0.0001$. The scaled computation took 2 sec., the unscaled one took 4 sec. The following pictures show the mean size of the evaluation vectors of the computed GB polynomials.

Figure 1: Without Data Scaling

Figure 2: With Data Scaling

Without Data Scaling: 280 GB polynomials

GB mean evaluation error: $2.8 \cdot 10^8$

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: 2.8 · 10⁸
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: 2.8 · 10⁸
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025
The Upshot:

Without Data Scaling: 280 GB polynomials
GB mean evaluation error: 2.8 · 10⁸
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025
The Upshot: Treat your approximate data right! Then they will treat you approximately right! Without Data Scaling: 280 GB polynomials
GB mean evaluation error: 2.8 · 10⁸
With Data Scaling: 100 GB polynomials
GB mean evaluation error: 0.025
The Upshot: Treat your approximate data right!
Then they will treat you approximately right!

Thank you for your attention!