Tutorial 3: Your Very Own EigenSolver

The purpose of this tutorial is to build a polynomial systems solver which is based on the eigenvector method. We continue to work over $K=\mathbb{Q}$ and let $P=K\left[x_{1}, \ldots, x_{n}\right]$. Given polynomials $f_{1}, \ldots, f_{s} \in P \backslash\{0\}$ which generate a zero-dimensional ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, we let $A=P / I$.
a) Write a CoCoA function MultMat (...) which takes I and $i \in\{1, \ldots, n\}$ and computes the matrix of the multiplication map $\mu_{x_{i}}: A \longrightarrow A$ with respect to the basis $\mathcal{O}_{\sigma}(I)=\mathbb{T}^{n} \backslash \operatorname{LT}_{\sigma}\{I\}$. (Here σ denotes the current term ordering.)
Hint: The CoCoA command QuotientBasis(...) may come in handy.
b) Compute all multiplication matrices for the following zero-dimensional ideals. Use $\sigma=$ DegRevLex.

1. $I_{1}=\left\langle 2 x^{2}+3 x y+y^{2}-3 x-3 y, x y^{2}-x, y^{3}-y\right\rangle \subseteq \mathbb{Q}[x, y]$
2. $I_{2}=\left\langle 3 x^{2}+4 x y+y^{2}-7 x-5 y+4,3 y^{3}+10 x y+7 y^{2}-4 x-20 y+\right.$ $\left.4,3 x y^{2}-7 x y-7 y^{2}-2 x+11 y+2\right\rangle \subseteq \mathbb{Q}[x, y]$
3. $I_{3}=\left\langle x^{2}-2 x z+5, x y^{2}+y z+1,3 y^{2}-8 x z\right\rangle \subseteq \mathbb{Q}[x, y, z]$
4. $I_{4}=\left\langle x^{2}+2 y^{2}-y-2 z, x^{2}-8 y^{2}+10 z-1, x^{2}-7 y z\right\rangle \subseteq \mathbb{Q}[x, y, z]$
c) Prove that a matrix $M \in \operatorname{Mat}_{d}(K)$ is non-derogatory if and only if the matrices $I_{d}, M, M^{2}, \ldots, M^{d-1}$ are K-linearly independent. Here I_{d} denotes the identity matrix of size $d \times d$.
d) Implement a CoCoA function IsNonDerogatory (. . .) which takes a matrix $M \in \operatorname{Mat}_{d}(K)$, checks whether M is non-derogatory and returns the corresponding Boolean value.
Hint: You may want to use Flatten(...) and Syz(...).
e) Use your function IsNonDerogatory (...) to check which of the multiplication matrices in (b) are non-derogatory.
f) Implement a CoCoA function EigenSolver (...) which takes a zerodimensional ideal $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq P$ and performs the following operations.
5. Replace I by its radical \sqrt{I} (see Tutorial 1).
6. Compute the multiplication matrices M_{1}, \ldots, M_{n} of $A=P / I$ w.r.t. the K-basis $\mathcal{O}_{\sigma}(I)$. Using Sorted (. .) , order this basis increasingly w.r.t. σ.
7. Check whether one of the multiplication matrices is non-derogatory. If this is not the case, abort with an error message. Otherwise, let M_{i} be non-derogatory.
8. Compute the eigenspaces of $\left(M_{i}\right)^{\text {tr }}$. Let v_{1}, \ldots, v_{d} be vectors which span the eigenspaces and have first coordinate 1 . Here $d=\operatorname{dim}_{K}(A)$.

Hint: If it works, the CoCoA function Eigenvectors (. . .) can be used here. You can also program a function CharPoly(...), use Factor (. .) , and find the eigenspaces of the K-rational eigenvalues using LinKer(...).
5. Read the coordinates of the solution points off the vectors v_{1}, \ldots, v_{d}.
g) Apply your EigenSolver (. .) to the ideals I_{1}, \ldots, I_{4}. How many rational solutions can you find?
h) (*) If you are adventurous, you may extend your Eigensolver (...) by treating the non-rational eigenvalues. For the real ones you can approximate them with RealRoots(...) and compute the eigenspaces of the approximations with the numerical functions of ApCoCoA . In the general case, you can mimic the computation over the number field $\mathbb{Q}[t] /\langle f(t)\rangle$ where $f(t)$ is the minimal polynomial of the eigenvalue.

