Tutorial 4: The BMM-Algorithm: Not a BMW!

Given a finite dimensional vector space V over a field K, we want to turn it into a module over the polynomial ring $P=K\left[x_{1}, \ldots, x_{n}\right]$. How can we succeed in doing this? One important example is the case $V=P / I$ where $I \subseteq P$ is a zero-dimensional ideal. Here the canonical surjective map $P \longrightarrow P / I$ makes V a cyclic P-module. Are there other examples? How can we define a P-module structure on V ? How can we check whether a P-module structure on V yields a cyclic module? These are the questions. Now let us look for answers.

Let us choose a K-basis $B=\left(v_{1}, \ldots, v_{\mu}\right)$ of V. Thus every endomorphism of V can be represented by a matrix of size $\mu \times \mu$ over K. In particular, when V is a P-module, then M_{1}, \ldots, M_{n} denote the matrices corresponding to the multiplication endomorphisms $\mu_{x_{i}}: V \longrightarrow V$.

Using the following Buchberger-Möller algorithm for matrices, we can calculate the kernel $\operatorname{Ann}_{P}(V)$ of the composite map

$$
\eta: P \longrightarrow \operatorname{End}_{K}(V) \cong \operatorname{Mat}_{\mu}(K)
$$

where η is the map which sends a polynomial $f \in P$ to the multiplication map $\mu_{f}: P \longrightarrow P$. Moreover, the algorithm provides a vector space basis of $P / \operatorname{Ann}_{P}(V)$. To facilitate the formulation of this algorithm, we use the following convention. Given a matrix $A=\left(a_{i j}\right) \in \operatorname{Mat}_{\mu}(K)$, we order its entries by letting $a_{i j} \prec a_{k \ell}$ if $i<k$, or if $i=k$ and $j<\ell$. In this way we flatten the matrix to a vector in $K^{\mu^{2}}$. Then we can reduce A against a list of matrices by using the usual Gaußian reduction procedure.
a) (The BMM-Algorithm)

Let σ be a term ordering on \mathbb{T}^{n}, and let $M_{1}, \ldots, M_{n} \in \operatorname{Mat}_{\mu}(K)$ be pairwise commuting. Consider the following sequence of instructions.

1. Let $G=\emptyset, \mathcal{O}=\emptyset, S=\emptyset, N=\emptyset$, and $L=\{1\}$.
2. If $L=\emptyset$, return the pair (G, \mathcal{O}) and stop. Otherwise let $t=\min _{\sigma}(L)$ and delete it from L.
3. Compute $t\left(M_{1}, \ldots, M_{n}\right)$ and reduce it against $N=\left(N_{1}, \ldots, N_{k}\right)$ to obtain

$$
R=t\left(M_{1}, \ldots, M_{n}\right)-\sum_{i=1}^{k} c_{i} N_{i} \quad \text { with } \quad c_{i} \in K
$$

4. If $R=0$, append the polynomial $t-\sum_{i} c_{i} s_{i}$ to G, where s_{i} denotes the $i^{\text {th }}$ element of S. Remove from L all multiples of t. Continue with step (2).
5. Otherwise, we have $R \neq 0$. Append R to N and $t-\sum_{i} c_{i} s_{i}$ to S. Append the term t to \mathcal{O}, and append to L those elements of $\left\{x_{1} t, \ldots, x_{n} t\right\}$ which are neither multiples of a term in L nor in $\mathrm{LT}_{\sigma}(G)$. Continue with step (2).

Prove that this is an algorithm which returns the reduced σ-Gröbner basis G of $\operatorname{Ann}_{P}(V)$ and a list of terms \mathcal{O} whose residue classes form a K-vector space basis of $P / \operatorname{Ann}_{P}(V)$.
Hint: You can proceed as follows:

1. To prove termination, use Corollary 1.3.6.
2. Let $I=\operatorname{Ann}_{P}(V)$, and let H be the reduced σ-Gröbner basis of I. To show correctness, prove by induction that after a term t has been treated by the algorithm, the following holds: the list G contains all elements of H whose leading terms are less than or equal to t, and the list \mathcal{O} contains all elements of $\mathbb{T}^{n} \backslash \operatorname{LT}_{\sigma}\{I\}$ which are less than or equal to t.
3. Show that the polynomial $t-\sum_{i=1}^{k} c_{i} s_{i}$ resulting from step (3) of the next iteration has leading term t.
4. Prove that the polynomial $g=t-\sum_{i=1}^{k} c_{i} s_{i}$ is an element of H if $R=0$ in step (4).
5. Finally, show that the term t is not contained in $\operatorname{LT}_{\sigma}(I)$ if $R \neq 0$ in step (5).
b) Apply the BMM-Algorithm to the following example. Let $V=\mathbb{Q}^{3}$, let $B=\left(e_{1}, e_{2}, e_{3}\right)$ be its canonical basis, and let V be equipped the the $\mathbb{Q}[x, y]$-module structure defined by

$$
M_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
0 & 2 & 1 \\
0 & 1 & 1
\end{array}\right) \quad \text { and } \quad M_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Compute the reduced DegLex-Gröbner basis of $\operatorname{Ann}_{P}(V)$ and a K-basis of $P / \operatorname{Ann}_{P}(V)$.
c) Implement the BMM-Algorithm in a CoCoA function BMM(...). Apply your function to the example above and compare its result to yours.
Now we are ready for the second algorithm of this tutorial: we can check effectively whether a P-module structure given by commuting matrices defines a cyclic module.

d) (Cyclicity Test)

Let V be a finite dimensional K-vector space with basis $B=\left(v_{1}, \ldots, v_{\mu}\right)$, and let M_{1}, \ldots, M_{n} be pairwise commuting matrices. We equip V with the P-module structure defined by M_{1}, \ldots, M_{n}. Consider the following sequence of instructions.

1. Using the BMM-Algorithm, compute a set of terms $\mathcal{O}=\left\{t_{1}, \ldots, t_{m}\right\}$ whose residue classes form a K-basis of $P / \operatorname{Ann}_{P}(V)$.
2. If $m \neq \mu$ then return "V is not cyclic" and stop.
3. Let z_{1}, \ldots, z_{μ} be new indeterminates and $A \in \operatorname{Mat}_{\mu}\left(K\left[z_{1}, \ldots, z_{\mu}\right]\right)$ the matrix whose columns are $t_{i}\left(M_{1}, \ldots, M_{n}\right) \cdot\left(z_{1}, \ldots, z_{\mu}\right)^{\operatorname{tr}}$ for $i=$ $1, \ldots, \mu$. Compute the determinant $d=\operatorname{det}(A) \in K\left[z_{1}, \ldots, z_{\mu}\right]$.
4. Check if there exists a tuple $\left(c_{1}, \ldots, c_{\mu}\right) \in K^{\mu}$ for which the polynomial value $d\left(c_{1}, \ldots, c_{\mu}\right)$ is non-zero. In this case return "V is cyclic" and $w=c_{1} v_{1}+\cdots+c_{\mu} v_{\mu}$. Then stop.
5. Return "V is not cyclic" and stop.

Prove that this is an algorithm which checks whether V is cyclic and, in the affirmative case, computes a generator.
Hint: Examine the images of the basis elements $\left\{\bar{t}_{1}, \ldots, \bar{t}_{\mu}\right\}$ for linear independence.
e) Apply the Cyclicity Test to the example above. Show that V is cyclic and find a generator.
f) Let $V=\mathbb{Q}^{3}$, let $B=\left(e_{1}, e_{2}, e_{3}\right)$ be its canonical basis, and equip V with the $\mathbb{Q}[x, y]$-module structure defined by the commuting matrices

$$
\mathcal{M}_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad \mathcal{M}_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

Apply the Cyclicity Test and show that V is not cyclic although the dimensions of V and of $P / \operatorname{Ann}_{P}(V)$ coincide.
g) Write a CoCoA function CyclTest (...) which takes a list of n commuting matrices and checks whether they define a cyclic P-module. Apply your function to the above examples.
Hint: If the field K is infinite, the check in step (4) can be simplified to checking $d \neq 0$. For a finite field K, we can, in principle, check all tuples in K^{μ}.

