Tutorial 4: The BMM-Algorithm: Not a BMW!

Given a finite dimensional vector space V over a field K, we want to turn it into a module over the polynomial ring $P=K[x_1,\ldots,x_n]$. How can we succeed in doing this? One important example is the case V=P/I where $I\subseteq P$ is a zero-dimensional ideal. Here the canonical surjective map $P\longrightarrow P/I$ makes V a cyclic P-module. Are there other examples? How can we define a P-module structure on V? How can we check whether a P-module structure on V yields a cyclic module? These are the questions. Now let us look for answers.

Let us choose a K-basis $B = (v_1, \ldots, v_{\mu})$ of V. Thus every endomorphism of V can be represented by a matrix of size $\mu \times \mu$ over K. In particular, when V is a P-module, then M_1, \ldots, M_n denote the matrices corresponding to the multiplication endomorphisms $\mu_{x_i}: V \longrightarrow V$.

Using the following Buchberger-Möller algorithm for matrices, we can calculate the kernel $\operatorname{Ann}_P(V)$ of the composite map

$$\eta: P \longrightarrow \operatorname{End}_K(V) \cong \operatorname{Mat}_{\mu}(K)$$

where η is the map which sends a polynomial $f \in P$ to the multiplication map $\mu_f: P \longrightarrow P$. Moreover, the algorithm provides a vector space basis of $P/\operatorname{Ann}_P(V)$. To facilitate the formulation of this algorithm, we use the following convention. Given a matrix $A = (a_{ij}) \in \operatorname{Mat}_{\mu}(K)$, we order its entries by letting $a_{ij} \prec a_{k\ell}$ if i < k, or if i = k and $j < \ell$. In this way we flatten the matrix to a vector in K^{μ^2} . Then we can reduce A against a list of matrices by using the usual Gaußian reduction procedure.

a) (The BMM-Algorithm)

Let σ be a term ordering on \mathbb{T}^n , and let $M_1, \ldots, M_n \in \operatorname{Mat}_{\mu}(K)$ be pairwise commuting. Consider the following sequence of instructions.

- 1. Let $G = \emptyset$, $\mathcal{O} = \emptyset$, $S = \emptyset$, $N = \emptyset$, and $L = \{1\}$.
- 2. If $L = \emptyset$, return the pair (G, \mathcal{O}) and stop. Otherwise let $t = \min_{\sigma}(L)$ and delete it from L.
- 3. Compute $t(M_1, \ldots, M_n)$ and reduce it against $N = (N_1, \ldots, N_k)$ to obtain

$$R = t(M_1, \dots, M_n) - \sum_{i=1}^k c_i N_i$$
 with $c_i \in K$

- 4. If R = 0, append the polynomial $t \sum_{i} c_{i} s_{i}$ to G, where s_{i} denotes the i^{th} element of S. Remove from L all multiples of t. Continue with step (2).
- 5. Otherwise, we have $R \neq 0$. Append R to N and $t \sum_i c_i s_i$ to S. Append the term t to \mathcal{O} , and append to L those elements of $\{x_1t,\ldots,x_nt\}$ which are neither multiples of a term in L nor in $LT_{\sigma}(G)$. Continue with step (2).

Prove that this is an algorithm which returns the reduced σ -Gröbner basis G of $\operatorname{Ann}_P(V)$ and a list of terms \mathcal{O} whose residue classes form a K-vector space basis of $P/\operatorname{Ann}_P(V)$.

Hint: You can proceed as follows:

- 1. To prove termination, use Corollary 1.3.6.
- 2. Let $I = \operatorname{Ann}_P(V)$, and let H be the reduced σ -Gröbner basis of I. To show correctness, prove by induction that after a term t has been treated by the algorithm, the following holds: the list G contains all elements of H whose leading terms are less than or equal to t, and the list $\mathcal O$ contains all elements of $\mathbb T^n \setminus \operatorname{LT}_\sigma\{I\}$ which are less than or equal to t.
- 3. Show that the polynomial $t \sum_{i=1}^{k} c_i s_i$ resulting from step (3) of the next iteration has leading term t.
- 4. Prove that the polynomial $g = t \sum_{i=1}^{k} c_i s_i$ is an element of H if R = 0 in step (4).
- 5. Finally, show that the term t is not contained in $LT_{\sigma}(I)$ if $R \neq 0$ in step (5).
- b) Apply the BMM-Algorithm to the following example. Let $V = \mathbb{Q}^3$, let $B = (e_1, e_2, e_3)$ be its canonical basis, and let V be equipped the the $\mathbb{Q}[x, y]$ -module structure defined by

$$M_1 = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$
 and $M_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$

Compute the reduced DegLex-Gröbner basis of $Ann_P(V)$ and a K-basis of $P/Ann_P(V)$.

c) Implement the BMM-Algorithm in a CoCoA function BMM(...). Apply your function to the example above and compare its result to yours.

Now we are ready for the second algorithm of this tutorial: we can check effectively whether a P-module structure given by commuting matrices defines a cyclic module.

d) (Cyclicity Test)

Let V be a finite dimensional K-vector space with basis $B = (v_1, \ldots, v_{\mu})$, and let M_1, \ldots, M_n be pairwise commuting matrices. We equip V with the P-module structure defined by M_1, \ldots, M_n . Consider the following sequence of instructions.

- 1. Using the BMM-Algorithm, compute a set of terms $\mathcal{O} = \{t_1, \ldots, t_m\}$ whose residue classes form a K-basis of $P/\operatorname{Ann}_P(V)$.
- 2. If $m \neq \mu$ then return "V is not cyclic" and stop.

- 3. Let z_1, \ldots, z_{μ} be new indeterminates and $A \in \operatorname{Mat}_{\mu}(K[z_1, \ldots, z_{\mu}])$ the matrix whose columns are $t_i(M_1, \ldots, M_n) \cdot (z_1, \ldots, z_{\mu})^{\operatorname{tr}}$ for $i = 1, \ldots, \mu$. Compute the determinant $d = \det(A) \in K[z_1, \ldots, z_{\mu}]$.
- 4. Check if there exists a tuple $(c_1, \ldots, c_{\mu}) \in K^{\mu}$ for which the polynomial value $d(c_1, \ldots, c_{\mu})$ is non-zero. In this case return "V is cyclic" and $w = c_1 v_1 + \cdots + c_{\mu} v_{\mu}$. Then stop.
- 5. Return "V is not cyclic" and stop.

Prove that this is an algorithm which checks whether V is cyclic and, in the affirmative case, computes a generator.

Hint: Examine the images of the basis elements $\{\bar{t}_1, \ldots, \bar{t}_{\mu}\}$ for linear independence.

- e) Apply the Cyclicity Test to the example above. Show that V is cyclic and find a generator.
- f) Let $V = \mathbb{Q}^3$, let $B = (e_1, e_2, e_3)$ be its canonical basis, and equip V with the $\mathbb{Q}[x, y]$ -module structure defined by the commuting matrices

$$\mathcal{M}_1 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \mathcal{M}_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Apply the Cyclicity Test and show that V is not cyclic although the dimensions of V and of $P/\operatorname{Ann}_P(V)$ coincide.

g) Write a CoCoA function CyclTest(...) which takes a list of n commuting matrices and checks whether they define a cyclic P-module. Apply your function to the above examples.

Hint: If the field K is infinite, the check in step (4) can be simplified to checking $d \neq 0$. For a finite field K, we can, in principle, check all tuples in K^{μ} .